PECM Issue 21 2016 | Page 56

The Impact of Signal-to-Noise Ratio on Guided Wave Radar Transmitter Performance transmitter signal amplitude is sufficient to detect a given dielectric, amplitude plays virtually no role in the detected SNR. In fact, if too many sources of unwanted reflections are present, a larger transmit pulse amplitude will simply elevate the noise at the same rate it elevates the level signal. The resulting change to the SNR is zero – the larger pulse provides no benefit in and of itself to SNR. in difficult applications is the signalto-noise ratio (S NR), which essentially describes the difference between the desired signal and the unwanted noise. If the amplitude of the noise approaches that of the level signal, loss of accuracy or linearity is the first observed effect due to distortion of the level signal as it passes through and interacts with the noise. Worse yet, if SNR is bad enough, the adverse signal interaction can actually result in a loss of the level signal. I n recent years, much has been said in the industry about the importance of the amplitude (size) of the guided wave radar (GWR) transmit pulse. While the size of the transmitted radar pulse is certainly important, it is a fact that pulse amplitude alone will not always yield accurate level measurement under all process conditions. A far more important parameter in reliable level measurement While it would be desirable to eliminate all the unwanted impedance discontinuities, it is simply not possible. The good news is that today’s most advanced GWR solutions address this critical design issue. Transmit Pulse Amplitude and Signal-to-Noise Ratio Many GWR manufacturers talk about transmit pulse amplitude; however, beyond the point at which the The only role of a larger transmit pulse is to assure that noise in the system does not become dominant in the overall SNR in low signal return cases (such as long probes under low dielectric conditions). Too small of a transmit signal would result in too small of a received signal in these cases, requiring excessive signal amplification in the level transmitter. Diode Switched Front End Design The new Eclipse® Model 706 uses a new design concept called the diode switched front end, which enhances front-end performance. The design of this advanced GWR transmitter features front-end circuitry innovations that enhance the transmitted pulse amplitude, improve the received signal strength and, most importantly, increase the SNR. For more information, download our free white paper, The Impact of Signalto-Noise Ratio on Guided Wave Radar Performance, at http://marketing. magnetrol.com/acton/media/8231/ impact-of-signal-to-noise-ratio-ongwr-magnetrol