GeminiFocus May 2014 | Page 10

Nancy A. Levenson Science Highlights Figure 1. GNIRS continuumsubtracted spectra of two newly identified B[e] supergiants in M31 (black), exhibiting the hydrogen Pfund series and both 12CO and 13CO. The red lines represent model fits to the observations. Gemini data help to understand the first B[e] supergiant stars in M31, support modeling of a young star’s disk, and identify lowmass stars in young groups of stars. Discovery of the First B[e] Supergiants in M31 Michaela Kraus (Akademie ved Ceske republiky, Czech Republic) and collaborators from Argentina and Brazil have used the Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North to identify the first B[e] supergiants in the nearby galaxy M31. These stars represent a short-lived phase of evolution of massive stars, after their time on the main sequence. These stars are broadly relevant first in the context of stellar evolution and seconc as sources of metal enhancements in galaxies. B[e] supergiants deposit enriched material in the interstellar medium through mass loss (during post-main-sequence phases) and ultimately as supernovae. The mass loss can result in disks and rings, and the progenitor of supernova 1987A in the Large Magellanic Cloud may, in fact, be a B[e] supergiant. Besides increasing the known population of these rare objects, M31 offers an interesting host environment, having higher metallicity (about twice solar) compared with previous examples. One challenge in identifying B[e] supergiants is to distinguish them from luminous blue variable (LBV) stars — another short-lived phase in the post-main sequence evolution of massive stars. This study’s original targets were selected from stars previously identified as “LBV candidates.” These newly discovered examples lie in a typical 8 GeminiFocus April 2014