GeminiFocus June 2012 | Page 34

Figure 1. The complex planetary nebula Sh2-71 as imaged by the Gemini MultiObject Spectrograph on Gemini North on Mauna Kea in Hawai‘i. The longassumed central star is the brightest object near the center of the gas ring, but evidence is building which hints that the much dimmer and bluer star (just to the right and down a bit) might be the parent of this beautiful object. The image is composed of three narrow-band images, and each is assigned a color as follows: H-alpha (orange), HeII (blue) and [OIII] (cyan). Each image is 15 minutes in duration, the field-of-view is 5.3 x 3.6 arcminutes, and the image is rotated 110 degrees clockwise from north up, east left. Image credit: Gemini Observatory/AURA Another unresolved issue is whether the brighter star’s unseen companion might be hot enough to excite the gas to glow. If so, this pair might be able to hold on to its parental connection to the nebula. A research team, led by Australian astronomers David Frew and Quentin Parker (Macquarie University, Sydney) are studying the dimmer, bluer star to understand its nature. “At the assumed distance to the nebula (roughly Image Background Information Gemini’s Multi-Object Spectrograph (GMOS) captured the light of Sh2-71 in its imaging mode using filters that selectively allow specific colors of visible light to reach the detector. Each color is produced by energized gas in the nebula glowing in a manner similar to a neon sign. Travis Rector of the University of Alaska Anchorage assembled the data from three filters (hydrogen alpha, helium II, and oxygen III) to form the composite color image. Planetary nebulae are the end-state of stars like our Sun. They form when old, medium-sized stars run low on nuclear fuel, become unstable, and begin expelling their outer layers of gas into space. Often these objects appear quite symmetrical, but when multiple stars are involved, their structure looks much more complex. In such cases, astronomers believe that the transfer of gas from one star to another results in explosions and eruptions that disrupt the symmetry of the nebula - as is clearly seen in this new Gemini image. Discovered in 1946 by Rudolph Minkowski, the nebula is located in the direction of the constellation Aquila and visible in amateur telescopes. Sh2-71 is the 71st object in a catalogue of nebulae originally assembled by the U.S. astronomer Stewart Sharpless of the US Naval Observatory in Flagstaff, Arizona. It is from his second catalogue, of 313 nebulae, published in 1959. 34 GeminiFocus June2012