GeminiFocus July 2014 | Page 10

Nancy A. Levenson Science Highlights This month’s Science Highlights reveal how Gemini’s evolving suite of state-of-the-art instruments are providing astronomers with the tools needed to explore the origins of lenticular galaxies, energetic outflows from active galactic nuclei, and star-forming clumps in high-redshift galaxies. The Origin of Lenticular Galaxies Lenticular (S0) galaxies are more common now than they were in the past, implying that they represent the late stages or endpoints of galactic evolution. Their precursors are likely spiral galaxies that have lost their disks. New work led by Evelyn Johnston (University of Nottingham) specifically traces the properties of their component stellar populations to provide evidence for this transformation. The research team found that, unlike spiral galaxies (such as the Milky Way), lenticular galaxies have bulges that are younger and more metal-rich than their disks. The team describes an evolutionary process whereby enriched gas in the spiral disk moves to the bulge, providing the material for the last episode of star formation in the new lenticular galaxy. The researchers concentrate on a sample of 21 S0 galaxies located in the Virgo Cluster. They employ a novel analysis technique, which uses the spatial light profile to decompose the separate bulge and disk spectra for each galaxy. This simple spatial model consists of only the bulge and disk components, so complicated morphologies, such as dust lanes and rings, are problematic. In all cases, the team needs high signal-to-noise ratios to extract the distinct spectra, which is possible in the relatively nearby Virgo Cluster and using the Gemini Multi-Object Spectrographs (GMOS) at both Gemini North and South. Absorption lines yield age and metal- 8 GeminiFocus July 2014