GeminiFocus July 2013 | Page 27

potential. However, it’s anyone’s guess if the comet has the “right stuff” to survive its extremely close brush with the Sun at the end of November and become an early morning spectacle from Earth in early December 2013. When Gemini obtained this time sequence, the comet ranged between roughly 455360 million miles (730-580 million kilometers; or 4.9-3.9 astronomical units) from the Sun, or just inside the orbital distance of Jupiter. Each image in the series, taken with the Gemini Multi-Object Spectrograph at the Gemini North telescope on Mauna Kea, Hawai‘i, shows the comet in the far red part of the optical spectrum, which emphasizes the comet’s dusty material already escaping from what astronomers describe as a “dirty snowball.” Note: The final image in the sequence, obtained in early May, consists of three images, including data from other parts of the optical spectrum, to produce a color composite image.” The images show the comet sporting a welldefined parabolic hood in the sunward direction that tapers into a short and stubby tail pointing away from the Sun. These features form when dust and gas escape from the comet’s icy nucleus and surround that main body to form a relatively extensive atmosphere called a coma. Solar wind and radiation pressure push the coma’s material away from the Sun to form the comet’s tail, which we see here at a slight angle (thus its stubby appearance). Discovered in September 2012 by two Russian amateur astronomers, Comet ISON is likely making its first passage into the inner Solar System from what is called the Oort Cloud, a region deep in the recesses of our Solar System, where comets and icy bodies dwell. Historically, comets making a first go-around the Sun exhibit strong activity as they near the inner Solar System, but they often fizzle as they get closer to the Sun. July2013 Sizing up Comet ISON (Previous page) Astronomer Karen Meech, at the University of Hawai‘i’s Institute for Astronomy (IfA) in Honolulu, is currently working on a preliminary analysis of the new Gemini data (as well as other observations from around the world) and notes that the comet’s activity has been decreasing somewhat over the past month. “Early analysis of our models shows that ISON’s brightness through April can be reproduced by outgassing from either carbon monoxide or carbon dioxide. The current decrease may be because this comet is coming close to the Sun for the first time, and a “volatile frosting” of ice may be coming off revealing a less active layer beneath. It is just no w getting close enough to the Sun where water will erupt from the nucleus revealing ISON’s inner secrets,” says Meech. “Comets may not be completely uniform in their makeup and there may be outbursts of activity as fresh material is uncovered,” adds IfA astronomer Jacqueline Keane. “Our team, as well as astronomers from around the world, will be anxiously observing the development of this comet into next year, especially if it gets torn asunder, and reveals its icy interior during its exceptionally close passage to the Sun in late November.” NASA’s Swift satellite and the Hubble Space Telescope (HST) have also imaged Comet ISON recently in this region of space. Swift’s ultraviolet observations determined that the comet’s main body was spewing some 850 tons of dust per second at the beginning of the year, leading astronomers to estimate the comet’s nucleus diameter is some 3-4 miles (5-6 kilometers). HST scientists concurred with that size estimate, adding that the comet’s coma measures about 3100 miles (5000 km) across. GeminiFocus Images of Comet ISON obtained using the Gemini Multi-Object Spectrograph at Gemini North on February 4, March 4, April 3, and May 4, 2013 (left to right, respectively; Comet ISON at center in all images). Technical Specifications: The three images on left are through an r-band filter only, and the color composite on right includes g, i, and r bands. All are integrated for 2 x 45 seconds with the February 4 image integrated for 2 x 75 seconds (increasing the comet’s apparent brightness). During the period of this sequence, the comet shined at about magnitude 15.5-16.5 in visible light. In these images north is up, east is left, and the field-of-view is about 2.5 arcminutes across, which corresponds to about 270,000-290,000 miles (435,000-470,000 kilometers) at the distance of the comet. Color composite produced by Travis Rector, University of Alaska Anchorage. Credit: Gemini Observatory/AURA 27