GeminiFocus January 2016 | Page 5

Keren Sharon Probing Time Delays in a Gravitationally Lensed Quasar Fast Turnaround observations with the Gemini North telescope are used to measure the difference in the arrival time of photons coming from a distant quasar, as they travel on different paths from the quasar to us due to gravitational lensing. The Gemini observations also produced deep spectroscopic data with GMOS that allowed our research team to obtain redshifts for other lensed galaxies behind the cluster. Imaging data from the Sloan Digital Sky Survey (SDSS) has uncovered many gravitational lenses including SDSS J2222 + 2745 — a galaxy cluster whose projected mass density is high enough to bend space-time, causing light traveling near it from a distant quasar to change its path. This phenomenon, which is a theoretical prediction of General Relativity, is called gravitational lensing. Describing a Strong Gravitational Lens When we observe massive objects, such as galaxy clusters, we often find that distant background galaxies appear distorted and stretched, and their apparent position in the sky is different than their actual positions. The equations that describe gravitational lensing dictate by how much the light is deflected due to the gravitational potential of an intervening object. The more massive an astronomical object, the stronger its lensing potential, and the larger the deflection of light. In some cases, which we call Strong Lensing (SL), there is more than one solution to the lens- January 2016 GeminiFocus 3