GeminiFocus 2014 Year in Review | Page 51

are developed; readers may also be interested in the recent SPIE proceedings describing the design of the plan (available here). See update (page 36). GHOST In April 2014, the Association of Universities for Research in Astronomy delivered to the Sydney-based Australian Astronomical Observatory (AAO) a signed contract for the design, building, testing, and commissioning of the Gemini High-resolution Optical SpecTrograph (GHOST, previously referred to as GHOS) — for use on the twin 8-meter telescopes. AAO will have two partners on the project: the National Research Council Herzberg in Victoria, Canada, which will be designing and building the spectrograph portion of GHOST; and the Australian National University Research School of Astronomy and Astrophysics in Canberra, which will be developing the instrument’s software. Rounding out the project team roster are Gemini Operations and Development team members from both the north and south sites. They will work closely with their Australian and Canadian counterparts to ensure a smooth transition of this new instrument into Gemini operations. Work on the project’s Preliminary Design stage has been proceeding for the past couple of months. Last May, instrument technicians, engineers, and scientists gathered in Sydney, Australia, where they spent three days making significant progress. With an end of year 2014 goal to have the preliminary design ready for review, and a 3rd-quarter 2017 goal to be commissioning this new fiber-fed, bench-mounted spectrograph, the GHOST project team is on its way to providing this long-awaited capability to the Gemini community. See updates (pages 45 and 46). January 2015 Gemini Generation-4 Instrument #3 Project Figure 5. With development of the Gemini Planet Imager (GPI) ramping down as the instrument’s commissioning nears completion, work on Gemini’s next new instrument (called Gen4#3 for the third, 4th-generation instrument) is advancing. The plan is to approach this new instrument as two distinctly different projects. First, we will solicit an open call for feasibility studies, which we expect to launch early in the fourth quarter of 2014. The goal of these funded, science-driven studies is to provide feasible concepts for an instrument consistent with the guidelines set by our Science and Technology Advisory Committee (STAC). Science operations specialist Erich Wenderoth (left), and systems engineer Andrew Serio (right), open the dome of the Gemini South telescope remotely from the La Serena Base Facility, without the assistance of an operator at Cerro Pachón. This milestone is part of the Base Facility Operations (BFO) project targeted to allow full remote operations, by the first half of 2016. Once we have reviewed these studies with our community, the creation of two or more sets of specific instrument requirements will commence, allowing us to pursue the second project. Subsequently, we will issue a request for proposals for teams to bid and agree to contracts for the remainder of the work. We expect to then choose two teams, one for each instrument concept, with whom we will negotiate a contract for the remainder of the work. We intend for this contract to include both the remaining design stages as well as the 2014 Year in Review GeminiFocus 49