GeminiFocus 2014 Year in Review | Page 31

galaxies have bulges that are younger and more metal-rich than their disks. The team describes an evolutionary process whereby enriched gas in the spiral disk moves to the bulge, providing the material for the last episode of star formation in the new lenticular galaxy. The researchers concentrate on a sample of 21 S0 galaxies located in the Virgo Cluster. They employ a novel analysis technique, which uses the spatial light profile to decompose the separate bulge and disk spectra for each galaxy. This simple spatial model consists of only the bulge and disk components, so complicated morphologies, such as dust lanes and rings, are problematic. In all cases, the team needs high signal-tonoise ratios to extract the distinct spectra, which is possible in the relatively nearby Virgo Cluster and using the Gemini Multi-Object Spectrographs (GMOS) at both Gemini North and South. Absorption lines yield age and metallicity values, with stellar indices measured directly and stellar models used to derive physical properties. While different models would provide different absolute values, the sense of the relationships remains robust, with younger and more metal-rich stellar populations in the disks (Figure 8) — the result of recent episodes of star formation in enriched material. The cluster environment, too, is likely important in the evolutionary process, which requires a traumatic event to strip the disk gas (quenching star formation there) and funnel it toward the galaxy’s center. The rich environments of clusters do provide such opportunities for the progenitor spiral galaxies to interact with other galaxies and the diffuse cluster medium. This work, however, is not sensitive to the possible effects of environmental variations. Full results are published in Monthly Notices of the Royal Astronomical Society, 441: 333, 2014, and a preprint is available. January 2015 Galaxy-wide Outflows Common Among Quasars New work shows that galaxy-wide outflows are common among galaxies that host luminous quasars. The underlying energetic source of these outflows is unclear, being related either to the accretion onto the central supermassive black hole or star formation. Some process to inject mass and energy into the surroundings does, however, appear to be an essential aspect of cosmic evolution. In addition to depositing chemically-enriched material in the halo and larger intergalactic environment, outflows may be a key link that provides feedback between the growth of central black holes and star formation, which accounts for the present-day distribution of galaxy properties. Figure 8. Estimates of the relative ages and metallicities of the bulges (blue circles) and disks (red ellipses) of the S0 galaxies in the Virgo Cluster. Solid lines link bulge and disk stellar populations from the same galaxy. The general trend shows younger, more metal-rich bulges relative to their corresponding disks. Chris Harrison (Durham University) led the study, based on observations of 16 luminous quasars at redshifts z < 0.2. These are all type 2 (i.e., obscured) radio-quiet quasars exhibiting ordinary rates of star formation. Selected from a parent sample of 24,000 galaxies, these observations yield general conclus [ۜ‚